小学五年级下册数学教学计划
时光飞逝,时间在慢慢推演,我们又将奔赴下一阶段的教学,请一起努力,写一份教学计划吧。相信写教学计划是一个让许多人都头痛的事情,下面是小编整理的小学五年级下册数学教学计划,欢迎阅读,希望大家能够喜欢。
小学五年级下册数学教学计划1
五年级第二学期是小学阶段最后一个学期,使用五年级(下册)教科书。这册教科书里把教学内容编排成七个单元,前六个单元教学新知识,完成《数学课程标准(实验稿)》规定的内容和任务。第七单元是总复习,目的是通过系统整理小学学过的数学知识,使学生进一步完善认知结构,进一步掌握数学的思想方法,进一步提高应用知识解决实际问题的能力。
本册教材可以说将青岛版小学数学的特色发挥并展示得淋漓尽致,主要有以下特点:
1、淡化生活情境,突出数学情境。
由“情境串”带动“问题串”,是该套教材的一大亮点。在情境串的呈现上,教材根据学生的年龄及知识特点,随着年级的升高,生活情境逐渐简约。本册教材突出表现为:一是创设有利于抽象数学知识的生活情境。如圆、圆柱与圆锥单元,呈现了生活中各种各样的圆形、圆柱、圆锥形状的物品作为情境;二是突出数学信息,淡化生活情境。如百分数单元,在假日旅游的背景下,更多呈现的是文字、图形、表格等形式的数学信息,便于直接引入新知探索;三是创设纯数学情境。如百分数单元的相关链结,小数、百分数、分数互化的知识以及第三个信息窗中绿点标示的问题,没有在信息窗中呈现,而是在探索中直接给出。
2、突出研究数学问题的方法--“把现实问题转化为数学问题,并利用已有知识和方法探索新知”。
这一研究方法主要是在合作探索中进行重墨体现。例如,探索圆柱、圆锥体积计算公式时,教材从现实问题“怎样求冰淇淋盒的容积?”入手,引导学生把现实问题转化成数学问题“怎样求圆柱体的体积?”,学生联想已有的知识经验--圆面积的推导方法,猜想是否可以把圆柱体转化成长方体推导出圆柱体的体积计算公式,最后通过操作、验证,总结推导出圆柱体体积的计算公式,然后利用计算公式求出圆柱体的体积,解决冰淇淋盒容积的问题。
教材的这一基本模式,有利于学生从知识经验和客观现实出发,在研究具体问题的过程中学习、理解和应用数学。改变了以往单纯教师讲的“注入式”教学模式,既有利于学生掌握数学知识的内涵,又有利于引导学生学会数学的思想方法,提高解决问题的能力,发展良好的数学素养。
3、在教学内容的安排上重视知识的内在联系。
这一特点体现在对知识的结构编排上,与传统教材相比,立足于新旧知识的联系进行了大胆地改革。例如,第三单元圆柱与圆锥的编写,传统教材的编排顺序是:圆柱的认识--圆柱的表面积--圆柱的体积--圆锥的认识--圆锥的体积;本册教材编排顺序是:圆柱和圆锥的认识--圆柱的表面积--圆柱和圆锥的体积。这样编排,可以通过对圆柱和圆锥特征、体积计算方法的对比学习,使学生建立知识间的内在联系,加深对圆柱、圆锥的理解。又如,传统教材是先学习比例尺,再学习正反比例的知识;而本册教材是先学习正反比例的知识后再学习比例尺,这样更有利于学生理解比例尺的意义,促进知识的迁移。
4、注重数学思想方法的渗透,努力培养学生解决问题的策略。
初步掌握一定的数学思想方法是学习数学的主要目标之一。编写本册教材时,特别关注数学思想方法的渗透。例如:在探索圆的面积计算方法时,教材通过圆的面积与圆内接正方形和圆外切正方形面积的比较,既估计了圆面积的大小范围,又渗透了正多边形逼近圆的方法,体现了极限的思想。又如,在探索圆周率和圆柱体积的计算方法时,教材渗透了直线图形和曲线图形的内在联系,体现了“化曲为直”的思想方法。
5、总复习的编写思路清晰,形式新颖。
总复习的编排可以说是青岛版教材的又一大亮点。在教材送审的过程中,我们也了解到前几套教材在送审的过程中均因总复习而未获通过。本套教材在总复习方面进行了独特的编排,充分体现了青岛版教材的思路与特色,将系统整理知识、数学思想与方法渗透、数学学习方法等进行了充分地展现。具体体现在以下几点:
(1)结构编排层次分明、脉络清晰,形成系统的网络体系。总复习根据内容设计了不同层次的版块,引领学生按知识体系有条理的回顾整理,把分散的知识点连成线、织成网、组成块,形成良好的认知结构。
(2)重视数学学习策略与方法的总结和提升。传统的总复习内容只包含知识与技能方面,而本教材既重视知识与技能的回顾整理,同时还注重学习策略与方法的回顾整理。教材设计了“知识与技能”和“策略与方法”两大版块。一方面,对小学阶段所学的知识与技能进行回顾整理;另一方面,对整个小学阶段教材中渗透的转化、数形结合、模型化等数学思想方法,进行归纳、总结和提升,突出数学思想方法在学习数学中的重要作用,帮助学生提高解决问题的能力。
(3)采用新型的复习方式,注重教师引领与自我反思相结合。教材在知识与技能中设置了“讨论与交流”、“应用与反思”两个版块。“讨论与交流”版块是提示学生去体会学习知识的价值以及与其他知识的联系。如:“比的基本性质、分数的基本性质、商不变的性质三者之间有什么联系?”这一问题的设计,目的是启发教师要引领学生对比、分数、除法三者之间的关系及三个性质的内在联系进行回顾整理;“应用与反思”版块则通过一些综合性的练习题目,使学生在具体的应用中自我检测综合运用知识的能力,查漏补缺,进一步丰富完善自己的认知结构。
(4)练习题少而精。传统教材总复习部分的练习题量比较大,机械重复的内容较多。为了避免上述现象,本教材减少了练习题的数量,并精心设计每道练习题,使每道练习题都具有代表性和针对性,突出复习重点,减轻学生的学习负担。
小学五年级下册数学教学计划2
一、指导思想
在数学教学中,要培养学生数学学习的新观念、新思路。新观念的形成不仅包含对事物的新认识、新思路,而且包含一个不断学习的过程。为此,要求学生必须掌握学会数学的学习方式,只有不断学习,获取新知识,更新观念,才能形成新的数学认识。在八年级数学的.教学中对概念的演化、推理的要求、思维的全面性、深刻性、严密性、创造性方面都提出了比七年级更高的要求,因此要在教学中对进一步培养学生数学学习的新观念、新思路提出更高的要求。
二、学生情况
本班学生有23人,大部分学生对数学有上进心,上学期在全镇统考中也取得了较好的成绩,但有些学生的接受能力还有待提高,学习态度还需不断端正。有几个学生自觉性不够,不能及时完成作业等,对于学习数学有一定困难。所以在新的学期里,在端正学生学习态度的同时,应加强培养他们的各种学习数学的能力,以提高成绩。
三、教材分析
图形的变换,因数与倍数,长方体和正方体,分数的意义和性质,分数的加法和减法,统计,数学广角和综合应用等。在数与代数方面,这一册教材安排了因数与倍数、分数的意义和性质,分数的加法和减法。因数与倍数,在前面学习整数及其四则运算的基础上教学初等数论的一些基础知识,包括因数和倍数的意义,2、5、3的倍数的特征,质数和合数。教材在三年级上册分数的初步认识的基础上教学分数的意义和性质以及分数的加法、减法,结合约分教学最大公因数,结合通分教学最小公倍数。在空间与图形方面,这一册教材安排了图形的变换、长方体和正方体两个单元。在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生获得探究学习的经历,认识图形的轴对称和旋转变换;探索并体会长方体和正方体的特征、图形之间的关系,及图形之间的转化,掌握长方体、正方体的体积及表面积公式,探索某些实物体积的测量方法,促进学生空间观念的进一步发展。
在统计方面,本册教材让学生学习有关众数和复式折线统计图的知识。在平均数和中位数学习的基础上,本册教材教学众数。平均数、中位数和众数都是反映一组数据集中趋势的特征数。平均数作为一组数据的代表,比较稳定、可靠,但易受极端数据的影响;中位数作为一组数据的代表,可靠性比较差,但不受极端数据的影响;众数作为一组数据的代表,也不受极端数据的影响。当一组数据中个别数据变动较大时,适宜选择众数或中位数来表示这组数据的集中趋势。
在用数学解决问题方面,教材一方面结合分数的加法和减法、长方体和正方体两个单元,教学用所学的知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,引导学生通过观察、猜测、实验、推理等活动向学生渗透优化的数学思想方法,体会解决问题策略的多样性及运用优化的方法解决问题的有效性,感受数学的魅力。
本册教材根据学生所学习的数学知识和生活经验,安排了两个数学综合应用活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学意识和实践能力。
四、教学目标:
1、理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行整数、小数的互化,能够比较熟练地进行约分和通分。
2、掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征;会求100以内的两个数的最大公因数和最小公倍数。
3、理解分数加、减法的意义,掌握分数加、减法的计算方法,比较熟练地计算简单的分数加、减法,会解决有关分数加、减法的简单实际问题。
4、知道体积和容积的意义及度量单位,会进行单位之间的换算,感受有关体积和容积单位的实际意义。
5、结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,探索某些实物体积的测量方法。
6、能在方格纸上画出一个图形的轴对称图形,以及将简单图形旋转90°;欣赏生活中的图案,灵活运用平移、对称和旋转在方格纸上设计图案。
7、通过丰富的实例,理解众数的意义,会求一组数据的众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征。
8、认识复式折线统计图,能根据需要选择合适的统计图表示数据。
9、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
10、体会解决问题策略的多样性及运用优化的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。
11、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
12、养成认真作业、书写整洁的良好习惯。
教学重点:因数与倍数,长方体和正方体,分数的意义和性质,分数的加法和减法,统计。
五、教学中需要准备的教具和学具
1、长方体和正方体实物及模型。
2、演示分数用的教具。
3、其他教具教师还可以根据各部分教学内容的需要自己准备或设计制作一些教具和学具。
如教学体积时制备1m3、1dm3模型,容纳1L、100ml液体的量杯;教学因数与倍数时,可根据教科书上的图制成教具等。教师还可以根据需要自己制作其他适用的教具。
小学五年级下册数学教学计划3
教学内容:
义务教育课程标准实验教科书数学五年级下册第三单元《长方体和正方体的体积》,教材41页42页。
教材分析:
学生已经探索并掌握长方形、正方形以及其他一些常见多边形的特征,并直观认识长方体和正方体的基础上进行教学的。从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。对常见平面图形特征及其周长、面积计算方法的探索,既为进一步探索长方体、正方体这样的立体图形的特征以及表面积、体积的计算方法奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也能为进一步学习其它立体图形打好基础。
教学目标:
1、使学生经历长方体,正方体体积公式的推导过程,理解长方体、正方体体积的计算公式;初步学会计算长方体和正方体的体积;
2、培养学生实际操作能力,同时发展他们的空间观念;
3、在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
教学重点:探索长方体体积的计算方法。
教学难点:理解长方体和正方体体积公式的推导过程。
教具准备:挂图,若干个1立方厘米小正方块
学具准备:1立方厘米的正方体16块
前置作业:
1、面积是24平方厘米的长方形有几种?都是哪几种?并画一画。
2、什么是体积,体积单位有哪些?
3、准备若干个1立方厘米的正方体,摆一摆,可以摆成什么形状?体积是多少?
教学过程:
一、创设情境,揭示课题
1、实物引入
师:上节课,我们认识了体积和体积单位,谁来说说什么是体积,体积单位有哪些呢?
昨天的知识你掌握的很好,相信你,前置作业完成的也很认真吧?你准备了几个一立方厘米的小正方体啊?都摆成什么形状了?体积是多少呢?
根据学生回答,其他学生也动手摆。
师:你是怎样知道的?
生:因为这个长方体由4个1立方厘米的正方体拼成,所以它的体积是4立方厘米。
图下板书:4立方厘米
师:如果再拼上一个1立方厘米的正方体,它的体积又是多少呢?
学生操作。
生:再拼上一个1立方厘米的正方体,这个长方体就含有5个1立方厘米的正方体,它的体积就是5立方厘米。
2、揭示课题
师:可见要计量一个物体的体积,就要看这个物体含有多少个体积单位。今天我们就来学习怎样计算长方体和正方体的体积。(板书:长方体和正方体的体积)
二、猜想验证,探究新知
1、提出猜想
师:你能不能像老师这样摆出一个长方体,并计算它的体积?
出示表格。学生四人一小组,每组一张表格。
长宽高正方体个数体积
长方体1
长方体2
长方体3
长方体4
师:请同学们一小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。
学生活动,师巡视。
师:同学们摆出了许多不同的长方体,并且填好了表格。哪一组来汇报?
学生黑板前展示表格,并做详细汇报。
引导学生观察表格,
师:观察表格中的数据,从中你能发现什么呢?师:通过观察比较,同学们有了一个大胆的猜想:长方体的体积等于它的长、宽、高的乘积。这个猜想是否正确呢?我们还要进一步研究。
(板书:)长方体的体积=长×宽×高。
2、验证猜想
课件出示:用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。
1、长4厘米,宽1厘米,高1厘米。
2、长4厘米、宽3厘米、高1厘米。
3、长4厘米、宽3厘米、高2厘米
师:这是三个不同的长方体,根据刚才的发现你能猜出它们的体积吗?根据回答,课件出示:4×1×1=4立方厘米,4×3×1=12立方厘米,4×3×2=24立方厘米
师:那究竟对不对呢?让我们再来摆一摆。
学生小组讨论,动手操作,师巡视。
组织交流,课件出示拼摆后的图形。
师:你是怎么摆的?体积是多少?
师:和我们之前的猜想一样吗?
师:那如果再给你一个长7厘米、宽4厘米、高3厘米的长方体,一共要用多少个1立方厘米的小正方体?它的体积是多少呢?出示例1
课件出示:
师:7×4×3=84立方厘米,所以它的体积就是84立方厘米。
3、概括公式
师:根据刚才的验证,得出之前这个结论是正确的。长方体的体积=长×宽×高,如果用V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高,你能字母表示长方体的体积吗?
V=abh
师:长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。
学生汇报:
因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
课件出示正方体,出示公式。
师:正方体的体积公式也可以用字母来表示。但用字母表示正方体的体积公式时,还有一些特殊的地方,书上对此作了详细的说明。请大家打开课本看一看。学生阅读课本。课件出示
正方体的体积:V=a3
师:写的时候,3要写在a的右上角,并且要写的小一些。
小训练:完成例2,在练习本上完成,集体订正。
三、巩固应用
计算下面长方体和正方体的体积。
1、长9厘米、宽6厘米、高5厘米
2、长0.5米、宽2.5米、高0.8米
3、棱长6分米
四、拓展延伸
师:长方体和正方体的体积在生活中运用的很多,让我们一起来看一看
师:这个算式表示什么意思呢?
出示:
品名:正方体收纳凳
尺寸:30×30×30
材质:涤纶+PP不织布+纤维板
颜色:黑白
师:你能看懂这个说明书吗?
师:如果要往这里放一个长40cm宽20cm高10cm的玩具箱,能放入到收纳凳里吗?
师:看来不能光比较体积的大小,还要联系实际情况,看看长宽高是否都符合要求。
五、课堂小结
师:这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?