同数连加解决问题教学设计【精选3篇】
同数连加解决问题教学设计【精选3篇】一
大文斗范文网后面为你推荐更多解决问题教学设计!
教学内容:
人教版课标教材六年级下册第59—60页例5、例6。
教学目的:
1、让学生掌握用正、反比例的方法解决问题。
2、使学生体验由算术解法向比例解法的思维转化过程。
3、形成解题多样化技能。
教学重难点:重点:学会用正反比例方法解决问题。
难点:在具体情境中区别用何种比例解决问题。
教学过程:
一、复习
师:同学们,这段时间我们一直在学习有关正、反比例的知识。下面,请看复习题。
(出示题目)
1、a×b=c(a、b、c均不等于0)
当a一定时,b和c成什么比例?
当b一定时,a和c成什么比例?
当c一定时,a和b成什么比例?
2、速度×()=路程
工作总量÷()=工作时间
()×数量=总价
总本数÷()=每包本数
每袋重量×()=总重量
师:这节课,我们一起来学习用解决问题。
二、新授
1、出示例5
①学生第一反映怎么解。小结,这是用的我们以前学的归一的办法。
②教师引导由加油站汽车加油付款比较,找出单价不变,建立关系式。
水费:吨数=单价
③学生述说,教师板演用正比例解法的书写过程。
④出示书上第二问,学生回答列式。
巩固练习:
(1)、小明买了4枝圆珠笔用6元。小刚想买3枝同样的圆珠笔,要用多少钱?
(2)、我国发射的科学实验人造地球卫星,在空中绕地球运行6周需要10.6小时,运行14周需要用多少小时?
(3)、师徒合作加工600个零件,8天加工了100个零件,照这样计算,剩下的零件还需要多少天才能加工完?
小结:首先找相关联的量,判断成什么比例;接着列方程;最后解方程并检验。
2、出示例6(学生自己解答)
①抓住不变的东西----总的本数判断成反比例关系
②建立关系式:每包本数×包数=总数
③学生述说,教师板演用反比例解法的书写过程。
④出示书上第二问,学生回答列式。
巩固练习:
(1)学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的。如果他想都买单价是2元的,可以买多少枝?
(2)车队向灾区运送一批救灾物资,去时每小时行60km,6.5小时到达灾区。回来时每小时行78km,多长时间能够返回出发地点?
(3)生产一批水泥,原计划每天生产150吨,可按时完成任务。实际每天增产30吨,结果只用25天就完成了任务。原计划完成生产任务需要多少天?
3、深化练习:
一辆汽车从甲地开往乙地,计划每小时行60km,9小时到达。但实际上2.5小时只行了125km,照这样的速度,汽车要几小时才能到达乙地?
三、全课小结
同数连加解决问题教学设计【精选3篇】二
教学内容:
义务教育课程标准实验教科书人教版数学二年级下册第54~55页例2~例3。
教学目标:
1.通过操作和语言表达活动,使学生理解“一个数是另一个数的几倍”的含义,体会数量之间的相互关系。
2.使学生经历将“求一个数是另一个数的几倍”的实际问题转化为“求一个数里含有几个另一个数”的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。
3.逐步培养学生“说”操作的意识和能力,提高操作的思维含量和自主探究能力。
教学重点:
使学生经历从实际问题中抽象出“一个数是另一个数的几倍”的数量关系的过程,会用乘法口诀求商解决实际问题。
教学难点:
将“求一个数是另一个数的几倍”的数量关系转化为“一个数里含有几个另一个数的除法”问题。
教学过程:
一、导入新课
1.观察填空。
指名学生回答,并讲一讲蜻蜓的只数是蝴蝶的2倍,就是5的2倍,2个5等于10(只)的思考过程。
2.摆小棒。
老师在投影仪上摆5根小棒,然后问:老师摆了几根小棒?(5根)
提问:谁愿意到上面来摆小棒?
请一名小朋友到投影仪上来摆小棒,其他小朋友在桌面上摆小棒。
如果小朋友们摆的小棒是老师的3倍,应怎样摆?(学生继续操作。)
提问:你是怎样摆的?一共摆了多少根小棒?
学生摆的根数是老师的3倍,就是摆5的3倍,5根5根的摆,摆3个5根,一共是15根。
板书:3个5根是15根
5的3倍是(15)
3.小结:我们刚才一起复习了有关“倍”的知识,今天我们继续学习有关“倍”的数学问题。
[设计意图]巩固学生已有的知识和操作技能,为学习求“一个数是另一个数的几倍”做好知识和探究方法的准备。
二、动手操作,探究新知
1.摆小飞机,认识“倍”。
师:(用5根小棒摆出一架飞机)小朋友们想不想摆小飞机呀?
(请一名小朋友到投影仪上摆小飞机,其他小朋友在桌面上摆小飞机,教师指导。)
组织汇报交流,用多少根小棒摆了小飞机几架。
学生(可能)的摆法:
用10根小棒摆了小飞机2架;用15根小棒摆了小飞机3架;用20根小棒摆了小飞机4架……
(老师对学生进行鼓励性评价,激发学生进一步探索的信心。)
教师在投影上用15根小棒摆小飞机3架,也就是说15根小棒是5根小棒的3倍。接着提问:谁能说一说用10根小棒摆了小飞机2架,就是说哪个数是哪个数的几倍?用20根小棒摆呢?
让学生多说一说,进一步理解“倍”的意义。
[设计意图]学生通过用小棒摆小飞机再说一说的活动,激发了学习兴趣。学生在摆小飞机的活动中,经历了动手操作和用语言表达自己的所做所想的过程,逐渐抽象出了“一个数是另一个数的几倍”的含义,认识了“倍”概念,训练了学生的抽象思维能力。
2.再摆一摆,把对“几倍”的理解转化成“除法”问题。
教师用投影出示下图:
师:老师用5根小棒摆了小飞机1架,小朋友们准备用多少根小棒来摆小飞机?(15根)小朋友摆小飞机用的小棒数是老师用的小棒数的几倍?(3倍)
(让学生互相说一说,因为5根小棒摆1架小飞机,所以15根小棒可以摆小飞机3架,15根是5根的3倍。)
师:谁能把这15根小棒迅速地摆一摆(不用摆成小飞机样子),能够让大家一下子就看出15是5的3倍来呢?
板书:15是5的(3)倍
请小朋友在投影仪上摆出下图,并说一说。
学生:把15根小棒,每5根小棒分一份,15根里面有3个5根,所以15是5的3倍。
板书:15根里有3个5根
师:如果你们用20根小棒来摆小飞机,所用小棒根数是老师的几倍?(20根是4个5根,所以20是5的4倍。)
小结:“求一个数是另一个数的几倍”的含义就是“求一个数里含有几个另一个数”,用除法计算。像上面摆小飞机就是求15是5的几倍。想:15里面有几个5,用除法算15÷5=3,所以15是5的3倍。说明“倍”是一种关系,不是计量单位,所以3后面什么也不用写。板书:15÷5=3
[设计意图]让学生通过摆小棒,应用转化的数学思想,把“一个数是另一个数的几倍”的实际问题转化成“一个数里面有几个另一个数”的除法问题。让学生学会用数学的方式来思考问题,提高了思维质量。
3.想一想,说一说。
(1)苹果3个,梨6个,梨的个数是苹果的几倍?(6里面有几个3,用除法算6÷3=2。)
(2)萝卜6个,茄子2个,萝卜的个数是茄子的几倍?(6里面有几个2,用除法算6÷2=3。)
[设计意图]让学生由实物联想到倍数关系,使学生体验到数学来源于生活。
(3)摆圆片。(动手操作,再说一说哪个数是哪个数的几倍。)
a.第一行摆4个○,第二行摆8个○。
b.第一行摆9个○,第二行摆3个○。
(4)8里面有()个4,8是4的()倍
12里面有()个3,12是3的()倍
24里面有()个6,24是6的()倍
42里面有()个7,42是7的()倍
三、运用知识解决问题
1.引导学生读课本第54页至55页的内容。
2.学习例3(思考回答问题)。
(1)仔细看图,从图中你获得了哪些信息?
(2)引导学生想一想,怎样解决“唱歌人数是跳舞人数的几倍”。
(3)引导学生独立解决问题。
(4)让学生说出自己的想法,并组织学生集体订正。
(5)还能提出什么问题。(根据学生的问题、思路引导分析解决。)
3.引导学生完成“做一做”。
4.归纳小结:求一个数是另一个数的几倍,就是求一个数里有几个另一个数,用除法计算。
[设计意图]突出学生的自主参与,独立思考。教师是学生学习的组织者、引导者与合作者,让学生有充分的时间学习探索。
四、巩固训练
1.练习十二第1题。
要求学生认真看图。(1)图中有些什么动物?(2)分别是多少只?(3)独立分析解决,小鹿的只数是小猴的几倍?(4)为什么这样列式?(5)还能提出其他问题吗?
2.独立完成第2题。
同数连加解决问题教学设计【精选3篇】三
教学内容:
P100例2、做一做及练习二十三P103第10题、P105第14—16题。
教学目标:
1、进一步培养学生收集、分析信息的能力,并学会用除法两步计算解决问题。
2、在解决问题的过程中,感受到同一个问题可以用不同的方法来解决,体验解决问题策略的多样性。
3、通过解决生活中的实际问题,感受到数学在日常生活中的作用。
教学重点:培养学生收集、分析信息的能力,并学会用除法两步计算解决实际问题。
教学难点:能正确分析连除实际问题的数量关系,找出中间问题,并用数学语言叙述解决问题的思路。能掌握解决此类问题的基本思路。
教学准备:课件、练习纸
教学过程:
一、复习引入,揭示课题
上节课我们已经学习了用连乘的方法来解决一些实际问题,还记得吗?考考你:
1、根据问题选择条件解答。
条件:
①、同学们植树,分成了3组。
②、每组都有12人。
③、一共植树144棵。
问题:
①、一共有多少人参加植树?
②、平均每组植树多少棵?
2、六一儿童节快到了,为了庆祝六一,我们学校从每班挑选部分同学参加集体舞表演。(出示P100例2情景图:)看!这是他们新编的造型:
(1)从图中你得到哪些数学信息?
(2)出示:集体舞新造型,把同学们分成2大组,每组有5个小圈,每个小圈有6人,学校共挑选了多少人参加这次集体舞表演?
3、其实生活中还有许多的数学问题,只是用乘法两步计算解决不了的。今天我们继续来学习有关用除法解决实际问题的知识。(板书:解决问题)
二、创设情境,探索新知。
1、现在,老师将这题变一变。看!你发现哪儿不一样了吗?(后面一个条件和问题交换了)现在要你解决什么数学问题?
(1)学生齐读题目。谁来说说:从题中你得到哪些数学信息?要解决什么数学问题?
(2)要解决“每个小圈有多少人?”,能一步求出来吗?
(3)那需要先求什么,再求什么?请根据你的想法列出算式,做完后互相说说,互相说一说你是先算什么,再算什么?(叫解法不同的同学板演)
(4)小组讨论,指名汇报,评价、鼓励正确的想法和不同的想法。
2、反馈(理解算理)(让学生在黑板上板演)
方法一:60÷2=30(人)
30÷5=6(人)
(1)哪些同学跟他一样?能说说你是怎么想的?(先算每大组几人,再算每小圈几人)
60÷2表示什么?(每个组有几人?)
30÷5表示什么?(每个小圈有几人)
(2)、先算:平均每个组有多少人?60÷2=30(人)
再算:平均每个小圈有多少人?30÷5=6(人)
(3)这种方法也可以用一个综合算式表示,意义一样,谁再来说一说?
综合算式:60÷2÷5=6(人)
(4)请学生说说每一步所表示的意思。
方法二:5×2=10(个)
60÷10=6(人)
(1)这样列式的同学请举手,能说说你是怎么想的?
2×5表示?(2组共有几个小圈)
60÷10表示?(每小圈有几人)
(2)分析:先求两大组共有多少个小圈?引导学生明确:已知平均分成2大组,每组有5个小圈,要求每个小圈有多少人,可以先算一算分成多少个小圈,再求每个小圈有多少人?
(3)、先求:一共分了多少个小圈?5×2=10(个)
再求:平均每个小圈有多少人?60÷10=6(人)
(4)能列出综合算式吗?综合算式:60÷(5×2)=6(人)
(5)请学生说说每一步所表示的意思。
方法三:60÷5÷2(若没有同学用这种方法就不讲)
(1)你是怎么想的?
60÷5表示什么?(2小圈为一组,每组有12人)
12÷2表示什么?(每小圈有6人)
(2)你真聪明,会想到用这种方法。
3、讨论比较:说一说这题的两种解题思路有什么不同?
引导学生说出:因为第一种解法先把60人分成两个大圈,每个大圈再分5个小圈,求出每个小圈有多少人?而第二种解法是每个大圈有5个小圈,两个大圈一共有10小圈,求出每个小圈有多少人?第一种解法第一步用除法,第二种解法第一步用的是乘法;所以:第一种解法是用连除,第二种解法是先乘再除;虽然列式不相同:但结果都是一样的,都是求的是“每小圈有多少人?”。都要两步来计算,第二步都是用除法,
4、小结:其实,有很多数学问题都能用多种方法解答,虽然解法不同,但目的却是一样的。所以在解决问题时,我们应该学会从不同的角度去思考,选取相应的信息、选用自己喜欢的、容易理解的方法去解决问题。但不管用什么方法算,我们都应该弄清楚每一步算式所表示的意思,并正确写出单位名称。像今天所学的这类问题,在解题时我们可以用连除,当然有的时候也可以用先乘后除的方法来解决。
5、指导看书,梳理知识
(1)独立阅读教材P100例2,然后同桌互相说说每一个算式分别表示什么意思。
(2)质疑提出自己还不懂的地方。
6、现在我们就用这样的方法来解决生活中的实际问题吧!
三、巩固应用,拓展提高
1、把问题和相对应的算式连起来
学校有3层教学楼,每层8个教室,一共安装了168台风扇。
①平均每层安装风扇多少台?3×8
②平均每个教室安装风扇多少台?168÷3
③一共有多少个教室?168÷3÷8
2、(课件出示:P100做一做:)看,这是我们在活动中为家长、同学们准备的杯子,你能帮忙解决吗?